Smoke, CO, and CO2 Measurements and Evaluation using Different Fire Testing Techniques for Flame Retardant Unsaturated Polyester Resin Formulations

Author:

Nazaré S.1,Kandola B.K.2,Horrocks A.R.2

Affiliation:

1. Centre for Materials Research and Innovation, The University of Bolton Deane Road, Bolton, BL3 5AB, UK,

2. Centre for Materials Research and Innovation, The University of Bolton Deane Road, Bolton, BL3 5AB, UK

Abstract

Smoke is considered to be the main fire hazard but its production depends on major variables, principally the chemical character and the burning rate of the polymer plus the availability of oxygen and hence ventilation. The main aim of this work is to study the effect of smoke suppressants on flammability and smoke production of flame retarded unsaturated polyester resin-nanocomposites using four different testing regimes representing different fire scenarios. Samples containing zinc borate, zinc stannates, ammonium polyphosphate with and without nanoclay are analyzed for smoke generation using cone calorimetry (well-ventilated fire), a tube furnace (fully developed fire), and a smoke density chamber (under-ventilated fire). Carbon monoxide (CO) and carbon dioxide (CO2) measurements using thermogravimetry-evolved gas analysis (TG-EGA), cone calorimetry, and tube furnace have also been analyzed and compared. Results have confirmed that the production of smoke, CO, and CO2 depend upon smoke suppressants and fire conditions used during testing samples. From this study it is evident that tin additives have very little influence on flammability of unsaturated polyester resin but they reduce smoke formation. The slight flame retardant action of the Res/APP/ZB sample is due to enhanced cross-linking of APP in the presence of zinc borate, whereas zinc stannates do not promote cross-linking of APP and hence show no improvement in flame retardancy. Finally, the presence of nanoclay in flame retarded resin shows significant reduction in smoke formations in both well-ventilated and under-ventilated fire condition. However, in the presence of smoke suppressants used in this study, the nanoclay is not instrumental in further suppressing smoke formation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3