Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimeter

Author:

Parikh Dharnidhar V.1,Nam Sunghyun1,He Qingliang2

Affiliation:

1. Cotton Chemistry and Utilization Unit, Southern Regional Research Center, ARS, USDA, New Orleans, LA, USA

2. Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, USA

Abstract

Unbleached (grey or greige) cotton nonwoven fabrics (with 12.5% polypropylene scrim) were treated with three phosphate–nitrogen–based flame retardant formulations and evaluated with micro-scale combustion calorimeter. Heat release rate, peak heat release rate, temperature at peak heat release rate, heat release capacity, total heat release and char yield were determined. The peak heat release rate and total heat release results demonstrated that nonwoven fabrics treated with a formulation having higher diammonium phosphate and no dimethylol dihydroxyethyleneurea were superior to those treated with a formulation containing dimethylol dihydroxyethyleneurea. Nonwoven fabrics treated with these formulations were both superior to the nonwoven fabrics treated with a commercially available flame retardant formulation. These results were supported by the percentages of phosphorus and nitrogen on these fabrics, confirming that P–N synergism imparts high flame retardancy to the nonwoven fabrics. Grey cotton (untreated) consistently showed better flame resistance than (untreated) bleached cotton. As a result, its flame retardant products had lower heat release rate/peak heat release rate and other flammability characteristics than those of the bleached cotton. Additionally, grey cotton is softer than bleached cotton and saves the cost of bleaching and waste disposal. These three flame retardant formulations were used primarily to treat the cotton component of the nonwoven blend to make it flame retardant without flame retardant improvement for the polymer component.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference19 articles.

1. 2010-2011 Mattress Industry, U.S. Market Forecast, March 2010. International Sleep Products Association, 501 Wythe Street, Alexandra, VA.

2. Polyurethane foam and fire safety

3. Flame Retardants in Commercial Use or Development for Textiles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3