Affiliation:
1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, P.R. China
Abstract
In this article, some of the combustion properties of three carbonate solvent mixtures commonly used as the electrolytes of lithium ion batteries are considered by means of the ISO 5660 cone calorimeter. Experimental findings reveal that the heat release rate, the most important parameter in fire science, exhibits a significant variation among the carbonate mixtures. Other key parameters governing the fire-induced hazards such as total heat release, mass loss rate, combustion efficiency, and concentration of the major exhaust gases are also determined and analyzed. Furthermore, as some researchers argue that oxygen consumption calorimetry is likely to over-predict the chemical heat release for lithium ion cells, another thermal chemistry method based on stoichiometry for heat release rate calculation is adopted. Heat release rate results of the three carbonate solvent mixtures obtained by these two separate methods are found to be in good agreement. Thus, oxygen consumption calorimetry is considered to be an appropriate technique to determine the heat release in fires in relation to electrolytes of lithium ion batteries.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献