A Review of Recent Progress in Phosphorus-based Flame Retardants

Author:

Levchik Sergei V.1,Weil Edward D.2

Affiliation:

1. Supresta LLC, 430 Saw River Mill Rd. Ardsley, NY 10502, USA

2. Polytechnic University, Six Metrotech Center Brooklyn, NY 11201, USA

Abstract

Recent patent and technical works indicate a growing interest in halogen-free solutions with the predominance of the literature focusing on phosphorus-based flame retardants. Patents published on the flame retardancy of polycarbonate and its blends significantly exceed the number of patents on flame retardancy of any other polymer. Bridged aromatic diphenyl phosphates, especially resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) have found broad application because of their good thermal stability, high efficiency, and low volatility. Another actively reported group of compounds are the metal salts of dialkylphosphonic acid as well as calcium hypophosphite, which have recently been found to be particularly effective in poly(butylene terephthalate) and polycarbonate. These products are synergistic with a number of phosphorus and nitrogen-containing compounds, such as melamine salts, which seem to be very efficient and commercially useful in nylons. Printed wiring boards comprise the largest market for flame-retardant polymeric materials. Recently, there has been a strong interest in halogen free solutions in East Asia and Europe. A recent halogen-free introduction is the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, which can be reacted into epoxies. Another reactive product with some processing and property advantages is poly(m-phenylene methylphosphonate). Because of the banning of pentabromodiphenyl ether in Europe and voluntary withdrawal of this product from the market in the US, the polyurethane (PU) industry is searching for a more environmentally acceptable low-scorch alternative. Both halogenated and halogen-free solutions are being considered but the PU industry seems to have a preference for the halogen-free products, generally containing phosphorus.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3