Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations

Author:

Langfeld Kirsten1,Wilke Antje1,Sut Aleksandra1,Greiser Sebastian1,Ulmer Bernhard2,Andrievici Vlad2,Limbach Patrick2,Bastian Martin2,Schartel Bernhard1

Affiliation:

1. BAM Federal Institute for Materials Research and Testing, Berlin, Germany

2. SKZ – German Plastics Center, Würzburg, Germany

Abstract

Multicomponent flame retardant systems containing aluminum diethylphosphinate in thermoplastic styrene–ethylene–butylene–styrene elastomers are investigated (oxygen index, UL 94, cone calorimeter, and mechanical testing). Solid-state nuclear magnetic resonance, scanning electron microscopy, and elemental analysis illuminate the interactions in the condensed phase. Thermoplastic styrene–ethylene–butylene–styrene elastomers are a challenge for flame retardancy (peak heat release rate at 50 kW m−2 > 2000 kW m−2, oxygen index = 17.2 vol%, no UL-94 horizontal burn rating) since it burns without residue and with a very high effective heat of combustion. Adding aluminum diethylphosphinate results in efficient flame inhibition and improves the reaction to small flame, but it is less effective in the cone calorimeter. Its efficacy levels off for amounts >∼25 wt%. As the most promising synergistic system, aluminum diethylphosphinate/melamine polyphosphate was identified, combining the main gas action of aluminum diethylphosphinate with condensed phase mechanisms. The protection layer was further improved with several adjuvants. Keeping the overall flame retardant content at 30 wt%, aluminum diethylphosphinate/melamine polyphosphate/titanium dioxide and aluminum diethylphosphinate/melamine polyphosphate/boehmite were the best approaches. An oxygen index of up to 27 vol% was achieved and a horizontal burn rating in UL 94 with immediate self-extinction; peak heat release rate decreased by up to 85% compared to thermoplastic styrene–ethylene–butylene–styrene elastomers, to <300 kW m−2.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3