Free Boundary Conditions for Simulating Air Movement in a Big Hall Induced by a "Bare Cabin" Fire

Author:

Chow W.K.1,Yin R.1

Affiliation:

1. Department of Building Services Engineering The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong, China

Abstract

Air movement in a big hall induced by a fire in a "bare cabin" was simulated using Computational Fluid Dynamics (CFD). Applying CFD in simulat ing fire-induced air flow in buildings would require specification of free boundary conditions. Improper description of the free boundary conditions would give very different results. Three free boundary conditions commonly used were tested. Three sets of big hall geometry including two bare cabin designs and five heat re lease rates of fire of 20 kW m-1, 40 kW m -1, 60 kW m-1, 80 kW m-1, and 100 kW m-1 were considered. The self-developed program CY-TEAM modified from TEAM was selected as the simulator. Further, the commercial software CFX4.2 was used to compare with part of the results predicted by CY-TEAM. This gave a total number of 60 simulations. Results predicted from all these different geometries, conditions and software were compared. It is concluded that the free boundary condition should be specified carefully in simulating fire-induced air flow with CFD.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3