Affiliation:
1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China
Abstract
Photovoltaic arrays are mounted on the surfaces of modern buildings to harness renewable energy. When a building catches fire, burning photovoltaic panels could worsen an already very hazardous environment. This work deals with the effect of building flame radiation on the fire behaviors of flexible photovoltaic panel installed in building-integrated photovoltaic systems. Cone calorimeter tests were conducted in air with a piloted ignition. The influence of heat flux on photovoltaic fire properties was studied. Several characteristic parameters are systematically determined or calculated, including ignition time, critical heat flux, mass loss rate, gasification heat, heat release rate, and effective heat of combustion. Thermogravimetry and differential scanning calorimetry test was conducted to identify the decomposition mechanism. The comparison of fire properties of photovoltaic and polyethylene terephthalate + tedlar-polyester-tedlar and thermogravimetry and differential scanning calorimetry analysis reveal that polyethylene terephthalate is the main component responsible for decomposition and burning of flexible photovoltaic panel.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献