Performance improvement of the dry chemical-based fire extinguishers using nanocalcium silicate synthesised from biowaste

Author:

Viriyawattana Nuttabodee1ORCID,Sinworn Surachat1

Affiliation:

1. Occupational Health and Safety Program, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand

Abstract

Herein, we investigated nanocalcium silicate (nCa2SiO4) prepared from clam shells and rice husks for its utilisation as a chemical agent in a fire-extinguishing mixture comprising ABC dry powder. The fire-extinguishing performance was evaluated with Class A and B fires. The prepared mixture was compared with commercial mono-ammonium phosphate powder based on different parameters, namely extinguishing time, amount of extinguishing agent used, fire temperature reduction rate, powder coating on the fuel and a reburn incident. It was found that the mixture of nCa2SiO4 and ABC dry powder could extinguish Class A and B fires within 10.67 and 9 s, respectively, while commercial mono-ammonium phosphate powder required 11 and 11.33 s to extinguish Class A and B fires, respectively. Thus, the mixture of nCa2SiO4 and ABC dry powder was more effective and less consumed as compared to commercial mono-ammonium phosphate powder (Class B only). This study demonstrates the efficacy of nCa2SiO4 to improve the performance of dry chemical-based fire extinguishers.

Funder

national science and technology development agency

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3