A computational fluid dynamics model to estimate local quantities in firebrand char oxidation

Author:

Banagiri Shrikar1ORCID,Meadows Joseph1ORCID,Lattimer Brian Y1

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract

Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.

Funder

Office of Energy Efficiency and Renewable Energy

bioenergy technologies office

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3