Effects of Combustion Gases On Escape Performance of the Baboon and the Rat

Author:

Kaplan Harold L.1,Grand Arthur F.1,Switzer Walter G.1,Mitchell Daniel S.1,Rogers Walter R.1,Hartzell Gordon E.1

Affiliation:

1. Department of Fire Technology and Department of Bioengineering Southwest Research Institute P.O. Drawer 28510 San Antonio, Texas 78284

Abstract

In postcrash aircraft fires, only a few minutes are often available for egress. To assess the potential of selected combustion gases (CO, acrolein and HCl) to impair human escape, a signalled avoidance task was developed for use with the juvenile African Savannah baboon. After a 5-minute exposure, the animal was required to select and depress the correct lever to open an escape door and then to exit into the adjacent compartment of a shuttlebox. With CO, the EC50 for escape failure was 6850 ppm. Acrolein (12 to 2780 ppm) neither prevented escape nor affected escape times, despite irritant effects at all concentrations. Similar results were obtained with HCI (190 to 17,200 ppm) in that, despite severe irritant effects, all animals successfully performed the escape task. With a comparable shuttlebox and escape paradigm for rats, the EC50 of CO was 6780 ppm. Five-minute exposures to HCI (11,800 to 76,730 ppm) did not prevent escape but severe post-exposure respiratory effects and lethality occurred at 15,000 ppm and higher. In both species, escape time was not affected by HCI but a concentration-related increase in intertrial responses was evident. The data suggest that laboratory test methods for measurement of incapacitation of rodents may be useful in evaluating potential effects of atmospheres containing CO or irritant gases on human escape capability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference14 articles.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3