Affiliation:
1. LMNEPM, Laboratory of Numerical and Experimental Modeling of the Mechanical Phenomena, Mechanical Engineering Department, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria
2. LMPM, Laboratory of Mechanic Physic of Materials, Mechanical Engineering Department, Faculty of Technology, Djillali Liabes University, Sidi Bel Abbes, Algeria
Abstract
Two assumptions have been made based on by this proposed theory, which come from recently developed exponential–trigonometric shape function for transverse shear deformation effect and a simple higher order shear deformation theory for plate, based on a constraint between two rotational displacements of axis parallel to the plate midplane, about the axes x, y Cartesian coordinates system, which caused fewer unknown number. For the application of this method, a displacement field extended as only bending membrane for transverse displacement is used, a governing equations of motion as a result are determined according to Hamilton’s principle, and simplified using Navier analytical solutions, as well as the transverse shear stresses effect that satisfied the stress-free boundary conditions on the simply supported plate free faces as a parabolic variation along the thickness are taken into account. A functionally graded materials plates are chosen for the parametric study, where the plates are functionally graded continuously in materials through the plate thickness as a function of power law or exponential form. The aim of this study is to analyze the bending, free vibration as well as the buckling mechanical behaviors, where the results are more focused on the investigation of different parameters such as the volume fraction index, geometric ratios, frequency modes, in-plane compressive load parameters and material properties effects on the deflection, stresses, natural frequencies, and critical buckling load, which are validated in terms of accuracy and efficiency with other plate theories results found in the literature.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献