Molecular Dynamics Simulation Study of Eucommiaulmoides GUM/AG Nanoparticle Composites

Author:

Li Fei-Zhou12,Lu Zhen-Lin2,Xi Yuntao3,Wang Xin-sheng1,Zhu Ming-qiang4

Affiliation:

1. Baoji University of Arts and Sciences, Department of Mechanical, Baoji 721007, China. Xi'an

2. University of Technology, School of Material Science and Engineering, Xi'an 710048, China.

3. School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China

4. College of Forestry, Northwest A&F University, Yangling 712100, China.)

Abstract

A study of eucommia ulmoides gum (EUG)/Ag nanoparticle (NP) composites by molecular dynamics (MD) simulations to understand their structure, polarizability, thermodynamic properties, and mechanical properties is proposed. The effects of simulation temperature and Ag NPs size on these parameters were also studied. The results revealed that the composites exhibited an isotropic amorphous structure, and the distribution uniformity of the Ag NPs was enhanced by changing the simulation temperature. Several atoms of the Ag NPs were in an amorphous state, and a polarized layer was observed on the interface between the Ag NPs and the eucommia ulmoide matrix. The interface size increased as the temperature increased and nanoparticles size decreased. The isochoric heat capacity and thermal pressure coefficient of the EUG/Ag-NP composites exhibited significant size effects and improved thermal interferences, which indicated that the presence of the Ag NPs had a positive effect on the mechanical properties of the EUG.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3