Analytical Fracture Mechanics Analysis of the Pull-Out Test Including the Effects of Friction and Thermal Stresses

Author:

Nairn John A.1

Affiliation:

1. Material Science & Engineering Department. University of Utah Salt Lake City, UT 84112, USA

Abstract

The energy release rate for propagation of a debond in a single-fibre pull out test was derived analytically. The key finding was that an accurate analysis can be derived by a global energy analysis that includes effects of residual stresses and interfacial friction but does not need to include the details of the stress state at the interfacial crack tip. By comparison to finite elements analysis, it was verified that the analytical results are very accurate provided the debond tip is not too close to either end of the specimen. By casting the results in terms of net-specimen stress, it was possible to derive a general energy release rate result that applies to both the pull-out test and the related microbond test. The energy release rate expressions can be used to determine interfacial fracture toughness from single-fibre pull-out tests or microbond tests.

Publisher

SAGE Publications

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3