Affiliation:
1. Shanghai Key Laboratory of Orthopaedic of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medcine, China
2. Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, China
Abstract
Purpose. We utilized a novel approach of combined photochemical tissue bonding (PTB) and human amniotic membrane (HAM) to improve hand tendon repair and also evaluated its efficacy. Methods. Subei chickens underwent surgical transection of the flexor digitorum profundus tendons and repair by (1) SR (standard Kessler suture; n = 24; 6-0 prolene) and (2) HAM/PTB (n = 24), where a section of HAM was stained with 0.1% Rose Bengal, wrapped around the ruptured tendon and bonded with 532 nm light (0.5 W/cm2, 200 J/cm2). Total active motion, gross appearance, extent of adhesion formation, biochemical properties, and inflammatory cells of the repaired tendon were evaluated on days 3, 7, 14, and 28 postoperatively. Results. PTB strongly bonded HAM with flexor digitorum profundus tendon surface. No significant difference was observed between the tensile properties of either group on all postoperative time points. The joint activities and the adhesion formation levels were significantly better in the HAM/PTB group compared with those in the SR group on day 14. Histological examination revealed drastically reduced number of inflammatory cells in the HAM/PTB group than in the SR group on days 7 and 14 after surgery. Conclusions. These findings revealed that PTB sealing of HAM around the tendon repair site provided considerable benefits for hand tendon repair by eliminating technical difficulties and obvious contraindications. Thus, this novel procedure has considerable benefits in repairing hand tendon damage.
Funder
shanghai municipal population and family planning commission
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献