Efficacy of New Polylactic Acid Nonwoven Fabric as a Hemostatic Agent in a Rat Liver Resection Model

Author:

Wakabayashi Taiga1ORCID,Yagi Hiroshi1,Tajima Kazuki12,Kuroda Kohei1,Shinoda Masahiro1,Kitago Minoru1,Abe Yuta1,Oshima Go1,Hirukawa Kazuya1,Itano Osamu3,Kitagawa Yuko1

Affiliation:

1. Keio University School of Medicine, Tokyo, Japan

2. Kitasato University School of Veterinary Medicine, Aomori, Japan

3. International University of Health and Welfare School of Medicine, Chiba, Japan

Abstract

Background. During minimally invasive surgery, efficient and nontoxic hemostats are important for difficult to access bleeding areas. Polylactic acid is an ecofriendly hemostatic agent and we aimed to evaluate the efficacy of a polylactic acid nonwoven fabric (PLAF) developed by Toray Industries, Inc, on liver hemostasis in a preclinical study. Materials and Methods. PLAF consists of both 1-µm diameter fibers and 100-µm diameter beaded fibers. Four rats were used, and 2 trough-shaped resections of the liver parenchyma were performed (n = 8 lobes). Immediately after the resection, PLAF (PLAF group: n = 4 lobes) or rayon gauze (Rayon group: n = 4 lobes) were applied on the resected plane and compressed manually. We compared the mean time to hemostasis and blood loss per lobe, as well as histological findings between the groups. Results. The PLAF group had a significantly shorter bleeding time ( P = .006), and showed lower blood loss compared with the Rayon group ( P = .076). Histopathological evaluation showed a large amount of beads on the liver surface in the PLAF group. Aggregated red blood cells evident by electron microscopy and von Willebrand factor immunofluorescence were seen surrounding the beads. The PLAF group showed significantly greater von Willebrand factor expression than the Rayon group ( P = .004). Discussion. This new PLAF showed superior outcomes thanks to its unique characteristic of forming beaded nanofibers, and it has the potential to be an efficient hemostat in minimally invasive surgery in the human body.

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3