Tumor Segmentation in Intraoperative Fluorescence Images Based on Transfer Learning and Convolutional Neural Networks

Author:

Hou Weijia1ORCID,Zou Liwen2,Wang Dong3

Affiliation:

1. College of Science, Nanjing Forestry University, Nanjing, China

2. Department of Mathematics, Nanjing University, Nanjing, China

3. Group A: Large-Scale Scientific Computing and Media Imaging, Nanjing Center for Applied Mathematics, Nanjing, China

Abstract

Objective To propose a transfer learning based method of tumor segmentation in intraoperative fluorescence images, which will assist surgeons to efficiently and accurately identify the boundary of tumors of interest. Methods We employed transfer learning and deep convolutional neural networks (DCNNs) for tumor segmentation. Specifically, we first pre-trained four networks on the ImageNet dataset to extract low-level features. Subsequently, we fine-tuned these networks on two fluorescence image datasets (ABFM and DTHP) separately to enhance the segmentation performance of fluorescence images. Finally, we tested the trained models on the DTHL dataset. The performance of this approach was compared and evaluated against DCNNs trained end-to-end and the traditional level-set method. Results The transfer learning-based UNet++ model achieved high segmentation accuracies of 82.17% on the ABFM dataset, 95.61% on the DTHP dataset, and 85.49% on the DTHL test set. For the DTHP dataset, the pre-trained Deeplab v3 + network performed exceptionally well, with a segmentation accuracy of 96.48%. Furthermore, all models achieved segmentation accuracies of over 90% when dealing with the DTHP dataset. Conclusion To the best of our knowledge, this study explores tumor segmentation on intraoperative fluorescent images for the first time. The results show that compared to traditional methods, deep learning has significant advantages in improving segmentation performance. Transfer learning enables deep learning models to perform better on small-sample fluorescence image data compared to end-to-end training. This discovery provides strong support for surgeons to obtain more reliable and accurate image segmentation results during surgery.

Funder

National Natural Science Foundation of China

China’s Ministry of Science and Technology

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3