Characterizing Pressure and Flow Rate for Aqueous Immersion Surgery

Author:

Montidoro Tyson A.1,Burgess James E.12,Antaki James F.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Allegheny General Hospital, Pittsburgh, PA, USA

Abstract

Hemorrhage control during surgery remains a major clinical challenge for surgeons. Bleeding can affect the safety and efficacy of any surgical procedure. There are well-established methods to address this side-effect of surgery, but all current technologies require the surgeon to direct attention to hemostasis rather than the continuance of the procedure. We have developed a novel surgical method, titled aqueous immersion surgery (AIS), that is able to sustain a bloodless surgical field by providing a controlled hydraulic pressure (immersion pressure) on the bleeding site. Together with the replenishment of an immersion fluid (immersion flow rate), AIS maintains optical clarity of the surgical field. This numerical study was undertaken to investigate the influence of the rate exchange of the immersion fluid on the concentration of blood, hence optical clarity therein. A 3-dimensional multicomponent simulation was performed to evaluate the mixing of blood from an idealized arterial bleeding vessel under pulsatile conditions. With an increase in immersion pressure, bleeding was reduced and increased perfusion was observed. Additionally, the magnitude and direction of the flow field affected the deflection of the bleeding trajectory and, in turn, affected the removal rate of blood from the surgical field. For an idealized case, an optimal immersion flow rate was found for immersion pressures of 100 and 110 mm Hg. From this study, fluid dynamic guidelines are postulated to support future development of AIS.

Publisher

SAGE Publications

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3