Development and Evaluation of Motion-activated System for Improved Chest Drainage: Bench, In Vivo Results, and Pilot Clinical Use of Technology

Author:

Karimov Jamshid H.1ORCID,Dessoffy Raymond1,Fukamachi Kiyotaka1,Okano Shinji2,Idzior Laura3,Lobosky Mark1,Horvath David4

Affiliation:

1. Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA

2. Transplant Center, Department of General Surgery, Cleveland Clinic, OH, USA

3. Cardiothoracic Intensive Care Unit, Nursing Institute, Cleveland Clinic, OH, USA

4. R1 Engineering, OH, USA

Abstract

Objective. The aim of this study was to evaluate a motion-activated system (MAS) that applies motion-activated energy (vibration) to prevent chest tube clogging and maintain tube patency. We performed chest tube blood flow analysis in vitro, studied MAS effects on intraluminal clot deposition in vivo, and conducted a pilot clinical test. Background. Chest tube clogging is known to adversely contribute to postoperative cardiac surgery outcomes. Methods. The MAS was tested in vitro with a blood-filled chest tube model for device acceleration and performance. In vivo acute hemothorax studies (n = 5) were performed in healthy pigs (48.0 ± 2 kg) to evaluate the drainage in MAS versus control (no device) groups. Using a high-speed camera (FASTCAM Mini AX200, 100 mm Zeiss lens) in an additional animal study (n = 1), intraluminal whole-blood activation imaging of the chest tube (32 Fr) was made. The pilot clinical study (n = 12) consisted of up to a 30 minutes device tolerance test. Results. In vitro MAS testing suggested optimal device performance. The 2-hour in vivo evaluation showed a longer incremental drainage in the MAS group versus control. The total drainage in the MAS group was significantly higher than that in the control group (379 ± 144 mL vs 143 ± 40 mL; P = .0097), indicating tube patency. The high-speed camera images showed a characteristic intraluminal blood “swirling” pattern. Clinical data showed no discomfort with the MAS use (pleural = 4; mediastinal = 8). Conclusions. The MAS showed optimal performance at bench and better drainage profile in vivo. The clinical trial showed patients’ tolerance to the MAS and device safety.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drainology: Leveraging research in chest-drain management to enhance recovery after cardiothoracic surgery;JTCVS Techniques;2024-06

2. Chest Tubes;Pleura - a Surgical Perspective [Working Title];2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3