Robotic Microsurgery in Extremity Reconstruction - Experience With a Novel Robotic System

Author:

Besmens Inga S.1ORCID,Politikou Olga1,Giovanoli Pietro1,Calcagni Maurizio1,Lindenblatt Nicole1ORCID

Affiliation:

1. Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland

Abstract

Background: Robotic systems have successfully been introduced into other surgical fields in the past. First attempts with different setups are made in the field of microsurgery. The Symani® Surgical System, a flexible platform consisting of two robotic arms, features motion scaling with tremor filtration to address the demands and complexity of microsurgery. Symani’s NanoWrist Instruments are the world’s smallest, wristed surgical instruments, intended to improve a surgeon’s range of motion beyond the capability of the human hand. This combination allows surgeons to scale their hand movements while seamlessly articulating the robotic micro instruments. Purpose: We report on our experience in extremity reconstruction with this novel system. Research Design: The Symani Surgical System® was used for 6 cases of extremity reconstruction. The surgeon controlled the manipulators along with the footswitch while either sitting away from the operating table relying on 3D visualization with an exoscope or sitting at the operating table using a standard microscope. Data Collection: Microsurgical anastomoses were performed in 4 patients (3 end-to-end arterial anastomoses and one end-to-side arterial anastomosis) and nerve grafting was performed in 2 patients. Results: Microvascular anastomoses were slower vs conventional microsurgery, but all anastomoses were patent. Epineural coaptation showed proper fascicle alignment and tissue manipulation could be kept to a minimum. The platform’s motion scaling allows the surgeon to perform precise micro-movements with only minimal tissue manipulation and hard-to-reach anatomy becomes accessible more easily. Conclusions: Robotic microsurgery might gain importance in the nearer future but more data will need to be collected.

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3