Design of a Compact Hologram System Capable of 3D Lesion Diagnosis in Clinic

Author:

Ryu Seung Yeob12,Lee Sangyun1,Yoon Kicheol1,Baek Jeong-Heum3,Kim Kwang Gi124ORCID

Affiliation:

1. Medical Devices R&D Center, Department of Biomedical Engineering, Gachon University Gil Medical Center, Incheon, Republic of Korea

2. Department of Biohealth & Medical Engineering Major, Gachon University, Seongnam-si, Republic of Korea

3. Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea

4. Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea

Abstract

Motivation This paper proposes a small-sized hologram system for the 3D imaging of lesions in a clinical environment. In a general hologram system, the distance between the beam-generating device and the screen (400 mm) and the size of the screen must be increased proportionally to obtain excellent image quality. However, in a clinical environment, the beam spread distance and screen size must be reduced. This paper proposes a method for reducing the beam divergence distance and screen size for clinical applications. Methods To reduce the beam spread distance and screen size, a beam prism with a 45° refractive index is used to reduce the beam spread distance by 1/3. The direction of the bent light must be adjusted such that it can reach the screen accurately. However, because the reflected light may be refracted owing to the material properties of the mirror and cause loss, this problem can be solved by using a full reflection mirror. Results The beam spread distance of the designed hologram system is 200 mm. The types of lesions obtained from the 3D images of the hologram include the lung, liver, and colon. The image resolution is 300 × 145. Conclusion If the proposed method is used in a clinical environment, doctors can improve their understanding of the patient quickly and efficiently; thereby, shortening the treatment time. The proposed hologram system is expected to be useful in treatment rooms, operating rooms, and educational programs in medical schools.

Funder

Gachon University

Technology Innovation Program, Ministry of Trade, Industry & Energy

Gachon University Gil Medical Center

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3