Patient organization perspective: a research roadmap for Okur-Chung Neurodevelopmental Syndrome

Author:

Rushing Gabrielle V.1ORCID,Sills Jennifer2

Affiliation:

1. CSNK2A1 Foundation, 1929 Van Ness Avenue, San Francisco, CA 94109, USA

2. CSNK2A1 Foundation, San Francisco, CA, USA

Abstract

Okur-Chung neurodevelopmental syndrome (OCNDS) is an ultra-rare disorder caused by variants in the CSNK2A1 gene. CSNK2A1 encodes for the alpha subunit of casein kinase 2 (CK2), a serine/threonine kinase critical in neural development. CK2 is implicated in many human pathologies, including viral infections, cancer, inflammation, cardiovascular, neurodegenerative, and psychiatric diseases. However, the mechanism of action for the CSNK2A1 variants observed in OCNDS is not fully understood, although studies suggest a loss of function or altered substrate specificity. There are no approved treatments for OCNDS, and current treatments focus on symptom management. The CSNK2A1 Foundation was established in 2018 and aims to find a cure for OCNDS and provide support to affected individuals. OCNDS presents with symptoms at varying severity, including developmental delay/intellectual disabilities, autism, disrupted sleep, speech delays/inability to speak, short stature, and, in ~25% of cases, epilepsy. The foundation has developed a research toolbox that is readily available to researchers worldwide and has awarded ~$1 million in grant funding. These efforts have provided valuable insights into CK2 biology and the natural history of OCNDS. However, additional efforts are needed to fully characterize the disease mechanism and investigate potential treatment interventions. Continued investigation into CK2 and its role in neural development holds promise for a better understanding of OCNDS and related disorders in the future. To accelerate research, we have developed a research roadmap highlighting key focus areas of landscape analysis/toolbox expansion, biomarker development, and therapeutic testing through a series of steps that are nonlinear; we expect these efforts to guide decision-making for therapeutic exploration whether that be drug repurposing, gene therapy, novel drug discovery, or a combination. In this perspective article, we describe OCNDS and the CSNK2A1 gene, highlight gaps in OCNDS research, discuss the research roadmap, and offer the founder’s perspective on our growth and future opportunities.

Publisher

SAGE Publications

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3