Identifying hidden visits from sparse call detail record data

Author:

Zhao Zhan1,Koutsopoulos Haris N2,Zhao Jinhua3

Affiliation:

1. Department of Urban Planning and Design, The University of Hong Kong, Hong Kong SAR, China

2. Department of Civil and Environmental Engineering, Northeastern University, Boston MA, USA

3. Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge MA, USA

Abstract

Despite many studies on trip inference using call detail record (CDR) data, a fundamental understanding of their limitations is lacking. In particular, because of the sparse nature of CDR data, users may travel to a location without being revealed in the data, which we refer to as a hidden visit. The existence of hidden visits hinders our ability to extract reliable information about human mobility and travel behavior from CDR data. In this study, we propose a data fusion approach to obtain labeled data for statistical inference of hidden visits. In the absence of complementary data, this can be accomplished by extracting labeled observations from more granular cellular data access records, and extracting features from voice call and text messaging records. The proposed approach is demonstrated using a real-world CDR dataset of 3 million users from a large Chinese city. Different machine learning models are used to infer whether a hidden visit exists during an observed displacement. The test results show significant improvement over the naive no-hidden-visit rule, which is an implicit assumption adopted by most existing studies. Based on the proposed model, we estimate that over 10% of the displacements extracted from CDR data involve hidden visits.

Funder

Energy Foundation China and China Sustainable Transportation Center

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3