A Galloping Horse Model

Author:

Herr Hugh M.1,McMahon Thomas A.2

Affiliation:

1. MIT–Harvard Division of Health Sciences and Technology, Physical Medicine and Rehabilitation, Harvard Medical School, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 200 Technology Square, NE43-006, Cambridge, Massachusetts 02139 USA

2. Division of Engineering and Applied Science, Harvard University, Pierce Hall 322, Cambridge, Massachusetts 02138 USA

Abstract

A two-dimensional numerical model of a horse is presented that predicts the locomotory behaviors of galloping horses, including how stride frequency, stride length, and metabolic rate change from a slow canter to a fast gallop. In galloping, each limb strikes the ground sequentially, one after the other, with distinct time lags separating hind and forelimb footfalls. In the model, each stance limb is represented as an ideal linear spring, and both feed-forward and feedback control strategies determine when each limb should strike the ground. In a feed-forward strategy, the first hindlimb and the first forelimb to strike the ground are phase-locked such that the time separating their adjacent footfalls is held constant by the controller. In distinction, in a feedback strategy, the footfalls of the second hindlimb and the second forelimb begin when the first hindlimb and the first forelimb are perpendicular to the model’s trunk, respectively. While any limb is in contact with the ground, the controller also employs a feedback control to move each stance foot at a constant tangential velocity relative to the model’s trunk. With these control schemes, the galloping model remains balanced without sensory knowledge of its postural orientation relative to vertical. This work suggests that a robot will exhibit behavior that is mechanically similar to that of a galloping horse if it employs spring-like limbs and simple feed-forward and feedback control strategies for which postural stabilization is an emergent property of the system.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3