Affiliation:
1. School of Mechanical and Aerospace Engineering Seoul National University Seoul 151-742, Korea,
2. Institute of Precision Machinery Technology Seoul National University of Technology Seoul 139-743, Korea
Abstract
This article reports on the design, analysis and control of a new type of wheeled mobile robot based on a nonholonomic spherical continuously variable transmission (S-CVT). Our S-CVT based mobile robot is designed to increase the run time (i.e., the length of time in which the robot can be operated), and to achieve full planar accessibility with the design of a novel pivoting device that takes advantage of the flexibility of the S-CVT. We examine the sources of power loss in the S-CVT, in particular spin loss. For a quantitative analysis of spin loss of the S-CVT, we develop a friction model for the S-CVT, and perform an in-depth contact analysis based on the relative velocity field and normal pressure distribution. We also present a nonlinear shifting controller based on feedback linearization that takes into account the dynamics of the S-CVT. To evaluate the energy efficiency of our mobile robot and the performance of the S-CVT as a machine element, we perform experiments with a hardware prototype. The results are benchmarked numerically with a differential drive type mobile robot equipped with a reduction gear.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献