Hypoxia Inducible Factor-1α Is a Regulator of Autophagy in Osteoarthritic Chondrocytes

Author:

Lu Junren1,Peng Yi1,Zou Jiapeng1,Wang Jiayi1,Lu Shunyi1,Fu Tengfei1,Jiang Libo1,Zhang Chi1,Zhang Jian1ORCID

Affiliation:

1. Department of Orthopedics, Zhongshan Hospital, Shanghai, China

Abstract

Objective To investigate the relationship between hypoxia inducible factor-1α (HIF-1α) and the autophagic response in osteoarthritic chondrocytes (OA), under inflammatory insult as represented by in vitro OA model. Methods Human chondrocyte cell line C28/I2 was cultured in both normoxic and hypoxic conditions and treated with interleukin-1β (IL1β) to emulate OA inflammatory insult in vitro. Cellular HIF-1α expression was silenced using siRNA transfection and cellular autophagic (P62/LC3II) response and OA chondrocyte damage (COL2A1/MMP13) related proteins were examined using western blotting. Cellular mitophagic (BNIP3/PINK1/Parkin) and apoptotic (Caspase/Cleaved Caspase 3) were also evaluated to assess mitophagy-mediated cell death due to HIF-1α silencing. Results Chondrocyte basal autophagy levels were higher in a HIF-1α elevated environment and was more resistant to IL1β-induced inflammatory insult. Increase in autophagic proteins showed better chondrocyte repair, which resulted a lower level of reactive oxygen species production, and lesser damage to chondrocyte integrity. Silencing HIF-1α activates cellular PINK1/Parkin and BNIP3 mitophagic proteins, which leads to the activation of Caspase/Cleaved Caspase 3 apoptotic cascade. Conclusion Our results show that chondrocyte autophagy is dependent on HIF-1α expression, showing the importance of HIF-1α in hypoxic chondrocyte function in OA. Dysregulation of HIF-1α expression results in the activation of mitophagy-mediated apoptosis.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3