Inhibition of Knee Osteoarthritis Progression in Mice by Administering SRT2014, an Activator of Silent Information Regulator 2 Ortholog 1

Author:

Miyaji Nobuaki1ORCID,Nishida Kyohei1,Tanaka Toshikazu1,Araki Daisuke1,Kanzaki Noriyuki1,Hoshino Yuichi1,Kuroda Ryosuke1,Matsushita Takehiko1

Affiliation:

1. Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan

Abstract

Objective Previous findings suggest that silent information regulator 2 ortholog 1 (SIRT1) plays essential roles in chondrocytes and prevents osteoarthritis (OA) development. The purpose of this study was to investigate the effects of intraperitoneal (i.p.) and intra-articular (i.a.) administration of the SIRT1 activator SRT2104, which has been approved for use in humans. Design OA was induced by destabilizing the medial meniscus in the knee joint of 12-week-old CL57BL/6J mice. The mice were divided into 3 groups, that is, the control group, SRT2104 i.p.-injection group, and SRT2104 i.a.-injection group. Tissues were harvested at 4, 8, 12, and 16 weeks postsurgery. OA progression was evaluated using the Osteoarthritis Research Society International (OARSI) score. The production of OA-related proteins in cartilage and synovium was examined by immunohistochemistry. Results OARSI scores in the control group were significantly higher at 8 and 12 weeks compared with other 2 groups. Immunohistochemical analysis showed that Sirt1 and type-2 collagen significantly increased, whereas MMP-13, ADAMTS-5, IL-1β, IL-6, cleaved caspase 3, PARP p85, acetylated NF-κB p65, and iNOS decreased significantly in cartilage tissues from the i.p. and i.a, SRT2104 groups. In the synovium, more iNOS-positive M1-like macrophages were observed in the control group than in the i.p. and i.a, SRT2104 groups, whereas more CD206-positive M2-like macrophages were detected in the i.p. and i.a. SRT2104 groups. Conclusions Both i.p. and i.a. SRT2104 injection reduced OA progression in the mouse OA model, suggesting that SRT2104 can serve as a new treatment for OA.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3