A Transgenic Rat for Noninvasive Assessment of Chondrogenesis in Vivo

Author:

Ferreira Elisabeth1,Gatrell Landon B.2,Childress Luke2,Wu Hong2,Porter Ryan M.1ORCID

Affiliation:

1. Center for Musculoskeletal Disease Research, Departments of Internal Medicine and Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA

2. Center for Musculoskeletal Disease Research, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Abstract

Objective To support the preclinical evaluation of therapeutics that target chondrogenesis, our goal was to generate a rat strain that can noninvasively report endogenous chondrogenic activity. Design A transgene was constructed in which the dual expression of bioluminescent (firefly luciferase) and fluorescent (mCherry) reporters is controlled by regulatory sequences from rat Col2a1. Candidate lines were established on a Lewis background and characterized by serial bioluminescence imaging as well as ex vivo measurement of molecular reporter levels in several tissues. The sensitivity and specificity of the reporter strain were assessed in models of orthotopic and ectopic chondrogenesis. Results Substantial bioluminescence signal was detected from cartilaginous regions, including the appendicular synovial joints, spine, sternum, nose, and pinnae. Bioluminescent radiance was intense at 1 month of age, rapidly declined with continued development, yet remained detectable in 2-year-old animals. Explant imaging and immunohistochemistry confirmed that both molecular reporters were localized to cartilage. Implantation of wild-type bone marrow stromal cells into osteochondral defects made in both young adult and aged reporter rats led to a time-dependent elevation of intra-articular reporter activity concurrent with cartilaginous tissue repair. To stimulate ectopic, endochondral bone formation, bone morphogenetic protein 2 was overexpressed in the gastrocnemius muscle, which led to bioluminescent signal that closely preceded heterotopic ossification. Conclusions This strain can help develop strategies to stimulate cartilage repair and endochondral bone formation or to inhibit chondrogenesis associated with heterotopic ossification.

Funder

University of Arkansas for Medical Sciences

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of General Medical Sciences

Arkansas Biosciences Institute

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3