Hypertonic Dextrose Stimulates Chondrogenic Cells to Deposit Collagen and Proliferate

Author:

Johnston Elisha1,Kou Yi2,Junge Jason3,Chen Lin4,Kochan Andrew5,Johnston Michael6,Rabago David7ORCID

Affiliation:

1. University of California Los Angeles, Los Angeles, CA, USA

2. Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

3. Imaging Services, Advanced Light Microscopy Core, Translational Imaging Center, University of Southern California, Los Angeles, CA, USA

4. Department of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA, USA

5. Healing Arts Research, Sherman Oaks, CA, USA

6. Independent Researcher, Rancho Palos Verdes, CA, USA

7. Department of Family and Community Medicine, Penn State College of Medicine, Hershey, PA, USA

Abstract

Objective Hypertonic dextrose (HD) injections (prolotherapy) for osteoarthritis are reported to reduce pain. Cartilage regeneration is hypothesized as a mechanism. This in vitro study identifies an HD concentration that stimulates chondrogenic cells to increase metabolic activity and assesses whether this concentration affects collagen deposition and proliferation. Design ATDC5 chondrogenic cells were cultured in normoglycemic DMEM/F12 medium, treated with concentrations of HD (4-400 mM), and assessed with PrestoBlue. Advanced light microscopy was used to conduct live imaging of collagen deposition through second harmonic generation microscopy (SHG) and proliferation via 2-photon excitation microscopy. Proliferation was additionally assessed with hemocytometer counts. Results A linear regression model found that, relative to the 4 mM baseline control, cells treated with 200 mM had a higher mean absorbance ( P = 0.023) and cells treated with 250 mM were trending toward a higher mean absorbance ( P = 0.076). Polynomial regression interpolated 240 mM as producing the highest average absorbance. Hemocytometer counts validated 250 mM as stimulating proliferation compared with the 4 mM control ( P < 0.01). A concentration of 250 mM HD led to an increase in collagen deposition compared with that observed in control ( P < 0.05). This HD concentration also led to increases in proliferation of ATDC5 cells relative to that of control ( P < 0.001). Conclusions A 250 mM HD solution appears to be associated with increased metabolic activity of chondrocytes, increased collagen deposition, and increased chondrocyte proliferation. These results support clinical prolotherapy research suggesting that intra-articular HD joint injections reduce knee pain. Further study of HD and cellular processes is warranted.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3