Systemic Administration of Granulocyte Colony-Stimulating Factor for Osteochondral Defect Repair in a Rat Experimental Model

Author:

Okano Tadashi1,Mera Hisashi2,Itokazu Maki12,Okabe Takahiro3,Koike Tatsuya4,Nakamura Hiroaki1,Wakitani Shigeyuki2

Affiliation:

1. Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan

2. Department of Health and Sports Sciences, Mukogawa Women’s University, Hyogo, Japan

3. Department of Orthopedic Surgery, Itabashi Chuo Medical Center, Tokyo, Japan

4. Center for Senile Degenerative Disorders (CSDD), Osaka City University Graduate School of Medicine, Osaka, Japan

Abstract

Objective: The objective of this study was to assess the effect of granulocyte colony-stimulating factor (G-CSF) on osteochondral defect repair in the rat knee. Design: Twenty-six 12-week-old male Lewis rats were randomly divided into 2 groups. From day 0 to day 4, the G-CSF group received glycosylated G-CSF, and the control group received phosphate-buffered saline. A 1.5-mm diameter and 1.0-mm deep osteochondral defect was introduced in the patellar groove of the bilateral femur in all rats on day 4. The peripheral blood nucleated cells were counted for 14 days from the first day of injection, the appearance of the cartilage repair was observed histologically and macroscopically for 2, 4, 8, 12, and 24 weeks after surgery. Results: The number of peripheral blood leukocytes increased 3 days and returned to normal levels 7 days after the first injection. Compared with the control group, the G-CSF group had more fibrous and/or bony tissue at earlier points in time. The tissue repair rate, which is defined as the percentage of repaired osteochondral defects, was significantly higher in the G-CSF group 4 weeks after surgery. However, there were no significant differences in the cartilage repair rate and the modified Wakitani score between the 2 groups at each time point. Conclusions: The defect filling was significantly better in the G-CSF group in the early phases. Our findings suggest that G-CSF may promote the repair of osteochondral defects by mediating an increase in the number of peripheral blood nucleated cells.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3