Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications

Author:

Arrigoni Paolo123,Ruprecht Jacob C.14,Chasse Dawn A.D.1,Glass Katherine A.4,Andress Benjamin5,Guilak Farshid67,Weinberg J. Brice89,McNulty Amy L.15ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA

2. Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, Locomotor System Diseases Unit, University of Pavia, Pavia, Italy

3. Department of Clinical Surgical, Diagnostic and Pediatric Sciences, Locomotor System Diseases Unit, University of Pavia, Pavia, Italy

4. Department of Biomedical Engineering, Duke University, Durham, NC, USA

5. Department of Pathology, Duke University School of Medicine, Durham, NC, USA

6. Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA

7. Shriners Hospital for Children, St. Louis, MO, USA

8. Department of Medicine, Duke University School of Medicine, Durham, NC, USA

9. VA Medical Center, Durham, NC, USA

Abstract

Objectives The utilization of viral vectors to deliver genes of interest directly to meniscus cells and promote long-term modulation of gene expression may prove useful to enhance meniscus repair and regeneration. The objective of this study was to optimize and compare the potential of lentivirus (LV) and adeno-associated virus (AAV) to deliver transgenes to meniscus cells in both intact meniscus tissue and isolated primary cells in monolayer. Design Porcine meniscus tissue explants and primary meniscus cells in monolayer were transduced with LV or self-complementary AAV2 (scAAV2) encoding green fluorescent protein (GFP). Following transduction, explants were enzymatically digested to isolate meniscus cells, and monolayer cells were trypsinized. Isolated cells were analyzed by flow cytometry to determine percent transduction. Results LV and scAAV2 showed a high transduction efficiency in monolayer meniscus cells. scAAV2 was most effective at transducing cells within intact meniscus tissue but the efficiency was less than 20%. Outer zone meniscus cells were more readily transduced by both LV and scAAV2 than the inner zone cells. Higher virus titers and higher cell density resulted in improved transduction efficiency. Polybrene was necessary for the highest transduction efficiency with LV, but it reduced scAAV2 transduction. Conclusions Both LV and scAAV2 efficiently transduce primary meniscus cells but only scAAV2 can modestly transduce cells embedded in meniscus tissue. This work lays the foundation for viral gene transfer to be utilized to deliver bioactive transgenes or gene editing machinery, which can induce long-term and tunable expression of therapeutic proteins from tissue-engineered constructs for meniscus repair and regeneration.

Funder

U.S. Department of Veterans Affairs

Arthritis Foundation

National Institute on Aging

Orthopaedic Research and Education Foundation

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3