Bioinformatics-Based Research on Key Genes and Pathways of Intervertebral Disc Degeneration

Author:

Yan Qi1,Xiao Quan12,Ge Jun1,Wu Cenhao1,Wang Yingjie1,Yu Hao1,Yang Huilin1,Zou Jun1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

2. Department of Orthopaedic Surgery, The Affiliated Lianshui People’s Hospital of Kangda College of Nan Jing Medical Universty, Lianshui, Jiangsu, China

Abstract

Objective To find out the pathways and key genes and to reveal disc degeneration pathogenesis based on bioinformatic analyses. Design The GSE70362 dataset was downloaded from the GEO (Gene Expression Omnibus) database. Differentially expressed genes (DEGs) between the patients having disc degeneration and healthy controls were screened by Limma package in R language. Critical genes were identified by adopting gene ontologies (GOs), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Results We identified 112 DEGs, including 60 genes which were upregulated and 52 that were downregulated. Analyses, such as GO and KEGG demonstrated that the DEGs got enriched in 4 biological processes and 2 signaling pathways, mainly related to disc degeneration. The PPI network analyses identified 5 key proteins, CCND1 (cyclin D1), GATA3, TNFSF11, LEF1, and DKK1 (Dickkopf related protein 1). Conclusion In this study, the DEGs and pathways determined promoted us understand the disc degeneration mechanisms. Also, the study may contribute novel biomarkers for the diagnosis and prevention of disc degeneration, and seek new treatment methods to repair and even regenerate degenerative intervertebral disc.

Funder

the Nature Science Foundation of China

the Jiangsu Province Science and Technology support Plan

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3