Cell-Laden and Cell-Free Matrix-Induced Chondrogenesis versus Microfracture for the Treatment of Articular Cartilage Defects

Author:

Gille Justus1,Kunow Julius1,Boisch Luer2,Behrens Peter1,Bos Ingeborg3,Hoffmann Christiane2,Köller Wolfgang1,Russlies Martin1,Kurz Bodo2

Affiliation:

1. Department of Trauma and Orthopaedic Surgery, University of Schleswig-Holstein, Campus Lübeck, Germany

2. Institute of Anatomy, University of Schleswig-Holstein, Campus Kiel, Germany

3. Institute of Pathology, University of Schleswig-Holstein, Campus Lübeck, Germany

Abstract

Objective: The aim of this study was to evaluate the regenerative potential of cell-laden and cell-free collagen matrices in comparison to microfracture treatment applied to full-thickness chondral defects in an ovine model. Methods: Animals ( n = 30) were randomized into 5 treatment groups, and 7-mm full-cartilage-thickness defects were set at the trochlea and medial condyle of both knee joints and treated as follows: 2 scaffolds in comparison (collagen I/III, Chondro-Gide®; collagen II, Chondrocell®) for covering microfractured defects (autologous matrix-induced chondrogenesis), both scaffolds colonized in vitro with autologous chondrocytes (matrix-associated chondrocyte transplantation), or scaffold-free microfracture technique. One year after surgery, cartilage lesions were biomechanically (indentation test), histologically (O’Driscoll score), and immunohistochemically (collagen type I and II staining) evaluated. Results: All treatment groups of the animal model induced more repair tissue and showed better histological scores and biomechanical properties compared to controls. The average thickness of the repair tissue was significantly greater when a scaffold was used, especially the collagen I/III membrane. However, none of the index procedures surpassed the others from a biomechanical point of view or based on the histological scoring. Collagen type II expression was better in condylar defects compared to the trochlea, especially in those treated with collagen I/III membranes. Conclusion: Covering of defects with suitable matrices promotes repair tissue formation and is suggested to be a promising treatment option for cartilage defects. However, it failed to improve the biomechanical and histological properties of regenerated articular cartilage compared to microfracture alone in an ovine model under the given circumstances.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3