Articular Chondroprogenitor Cells Maintain Chondrogenic Potential but Fail to Form a Functional Matrix When Implanted Into Muscles of SCID Mice

Author:

Marcus Paula1,De Bari Cosimo2,Dell’Accio Francesco3,Archer Charles W.14

Affiliation:

1. Cardiff School of Bioscience, Cardiff University, Cardiff, UK

2. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

3. Centre for Experimental Medicine and Rheumatology, Queen Mary University of London, London, UK

4. School of Medicine, Swansea University, Swansea, UK

Abstract

Objective Articular cartilage is a complex tissue comprising phenotypically distinct zones. Research has identified the presence of a progenitor cell population in the surface zone of immature articular cartilage. The aim of the present study was to determine the in vivo plasticity of articular cartilage progenitor. Design Chondropogenitor cells were isolated from bovine metacarpalphalangeal joints by differential adhesion to fibronectin. Cells were labeled with PKH26 and injected into the thigh muscle of severe-combined immunodeficient (SCID) mice. After 2 weeks, the muscles were dissected and cryosectioned. Sections were stained with safranin O and labeled for sox9 and collagen type II. Polymerase chain reaction analysis was carried out to determine plasticity for a number of tissue-specific markers. Full-depth chondrocytes acted as a control. Results Fluorescent PKH26 labeled cells were detected after 2 weeks in all samples analyzed. A cartilage pellet was present after injection of freshly isolated chondrocytes. After injection with clonal and enriched populations of chondroprogenitors, no distinct pellet was detected, but diffuse cartilage nodules were found with regions of safranin O staining and Sox9. Low levels of collagen type II were also detected. Polymerase chain reaction analysis identified the presence of the endothelial cell marker PECAM-1 in one clonal cell line, demonstrating phenotypic plasticity into the phenotype of the surrounding host tissues. Conclusions The bovine articular cartilage progenitor cells were able to survive in vivo postimplantation, but failed to create a robust cartilage pellet, despite expressing sox9 and type II collagen. This suggests the cells require further signals for chondrogenic differentiation.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3