Combination of a Collagen Scaffold and an Adhesive Hyaluronan-Based Hydrogel for Cartilage Regeneration: A Proof of Concept in an Ovine Model

Author:

Levinson Clara1,Cavalli Emma1,von Rechenberg Brigitte23,Zenobi-Wong Marcy13ORCID,Darwiche Salim E.23ORCID

Affiliation:

1. Tissue Engineering and Biofabrication, Institute for Biomechanics, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland

2. Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

3. Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland

Abstract

Objective Hyaluronic acid–transglutaminase (HA-TG) is an enzymatically crosslinkable adhesive hydrogel with chondrogenic properties demonstrated in vitro and in an ectopic mouse model. In this study, we investigated the feasibility of using HA-TG in a collagen scaffold to treat chondral lesions in an ovine model, to evaluate cartilage regeneration in a mechanically and biologically challenging joint environment, and the influence of the surgical procedure on the repair process. Design Chondral defects of 6-mm diameter were created in the stifle joint of skeletally mature sheep. In a 3-month study, 6 defects were treated with HA-TG in a collagen scaffold to test the stability and biocompatibility of the defect filling. In a 6-month study, 6 sheep had 12 defects treated with HA-TG and collagen and 2 sheep had 4 untreated defects. Histologically observed quality of repair tissue and adjacent cartilage was semiquantitatively assessed. Results HA-TG adhered to the native tissue and did not cause any detectable negative reaction in the surrounding tissue. HA-TG in a collagen scaffold supported infiltration and chondrogenic differentiation of mesenchymal cells, which migrated from the subchondral bone through the calcified cartilage layer. Additionally, HA-TG and collagen treatment led to better adjacent cartilage preservation compared with empty defects ( P < 0.05). Conclusions This study demonstrates that the adhesive HA-TG hydrogel in a collagen scaffold shows good biocompatibility, supports in situ cartilage regeneration and preserves the surrounding cartilage. This proof-of-concept study shows the potential of this approach, which should be further considered in the treatment of cartilage lesions using a single-step procedure.

Funder

Kommission für Technologie und Innovation

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3