Effects of Diclofenac Etalhyaluronate (SI-613/ONO-5704) on Cartilage Degeneration in Arthritic Rats and Inflammatory Cytokine-Stimulated Human Chondrocytes

Author:

Takada Shuhei1ORCID,Nodera Risa1,Yoshioka Keiji1

Affiliation:

1. Central Research Laboratory, Research & Development Division, Seikagaku Corporation, Tokyo, Japan

Abstract

Objective Cartilage degeneration is a key feature of osteoarthritis (OA) and rheumatoid arthritis and is thought to negatively impact patients’ quality of life. Diclofenac etalhyaluronate (DEH, SI-613/ONO-5704) is a hyaluronic acid (HA) derivative chemically bound to diclofenac (DF) that has been reported to improve OA symptoms; however, its effect on cartilage degeneration remains unknown. In the present study, we investigated the chondroprotective effect of DEH in rats with collagen-induced arthritis and interleukin-1β-stimulated human chondrocytes. Design Rats with collagen-induced arthritis were administered DEH and HA intra-articularly, and DF orally. Knee joint swelling, histological scores of articular cartilage, and inflammatory (Il1b) and catabolic (Mmp3 and Mmp13) gene expression in the synovial tissue and cartilage were evaluated. In vitro direct effects of DEH on matrix metalloproteinase (MMP)-3 and MMP-13 expression were examined in interleukin-1β-stimulated human chondrocytes. Results In a rat model of collagen-induced arthritis, a single intra-articular dose of DEH inhibited knee joint inflammation and cartilage degeneration. Daily oral administration of DF had similar effects. Conversely, HA administered as a single intra-articular dose had no effect. Only DEH inhibited Mmp3 gene expression in the cartilage, whereas DEH and DF inhibited Mmp3 and Mmp13 mRNA expression in the synovial tissue. In interleukin-1β-stimulated human chondrocytes, DEH and HA inhibited MMP-3 and MMP-13 production, whereas DF had no effect. Conclusions In this study, we demonstrated the chondroprotective effect of DEH in rats with collagen-induced arthritis and in interleukin-1β-stimulated human chondrocytes. Thus, DEH may suppress cartilage degeneration in patients with musculoskeletal diseases, such as OA.

Publisher

SAGE Publications

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3