Combining Statistical and Machine Learning Methods to Identify Predictors of Brazilian Students’ Proficiency in PISA 2018

Author:

San Martin Soares Pedro12ORCID

Affiliation:

1. Universidade Federal de Pelotas, Pelotas, Brazil

2. State Health Department of Rio Grande do Sul, Porto Alegre, Brazil

Abstract

Brazil’s education system lags behind international standards, with two-fifths of students scoring below the minimum level of proficiency in mathematics, science, and reading. Thus, this study combined machine learning with traditional statistics to identify the most important predictors and to interpret their effects on proficiency in the PISA 2018 mathematics, science, and reading tests. Predictors encompassed a wide range of variables, sociodemographic characteristics, teaching and learning processes, and non-cognitive skills. The outcome of the present study was proficiency in mathematics, science, and reading. PISA proficiency levels were grouped into “low proficiency” and “proficient” categories, using a classification system commonly employed in PISA reports. Using random forest analysis, a machine learning method, I compared the importance of predictors for proficiency in mathematics, science, and reading. I then adjusted multilevel logistic regression analyses to investigate the relationship between the top predictors and the outcomes. Among the top predictors for the three outcomes identified, annual household income, parents’ highest occupational status, and early childhood education and care were positively associated with proficiency in mathematics, science, and reading, while grade repetition and additional instruction were negatively associated with these outcomes. These findings urge Brazilian policymakers and educators to prioritize initiatives that strengthen early childhood programs, minimize grade repetition, and promote effective learning strategies.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3