Distribution of concanavalin A binding sites on the surface of dissociated rat submandibular gland acinar cells.

Author:

Amakawa T,Barka T

Abstract

The submandibular glands of 4-week-old rats were dissociated by a procedure involving digestions with collagenase and hyaluronidase, chelation of divalent cations and mechanical force. A suspension of single cells was obtained in low yield by centrifugation in a Ficoll-containing medium. Immediately after dissociation and after a culture period of 16-18 hr the dissociated cells were tested for agglutinability by concanavalin A (Con A). Using ferritin (tfer)-conjugated Con A the lectin binding by the isolated acinar cells was also studied. The dissociated cells were agglutinated by low concentrations of Con A and bound Fer-Con A molecules on their entire surface without any indication of polarization of the cell membrane. There was a considerable cell to cell variation in the amount of Fer-Con A binding which was, in general, sparse and patchy. The contact surfaces between agglutinated cells revealed a dense binding of Fer-Con A molecules irrespective of the types of cells participating in the agglutination reaction. Cells cultured for 16-18 hr were no longer agglutinated by Con A. As compared to the freshly dissociated cells the cultured acinar cells revealed a more uniform and denser binding of Fer-Con A molecules. Furthermore, there were more lectin molecules bound to the cell surface corresponding to the basal part of the cell, where the nucleus and most of the rough surface endoplasmic reticulum were located, than to the apical cell surface. It is suggested that the higher density of lectin-binding sites on the cell surface in the vicinity of the cisternae of the rough endoplasmic reticulum indicates insertion sites of newly synthesized membrane glycoproteins.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3