Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity

Author:

Meszaros Evan1,Malemud Charles J.2

Affiliation:

1. Division of Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA

2. Division of Rheumatic Diseases, Department of Medicine, University Hospitals Case Medical Center, 2061 Cornell Road, Rm 207, Cleveland, OH 44106-5076, USA

Abstract

Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme–protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown.

Publisher

SAGE Publications

Subject

Medicine (miscellaneous)

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3