Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning

Author:

Chen Jin-Bor1,Yang Huai-Shuo2,Moi Sin-Hua3,Chuang Li-Yeh3,Yang Cheng-Hong456ORCID

Affiliation:

1. Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung

2. Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung

3. Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung

4. Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 415 Jiangong Road, San-Min District, Kaohsiung, 82444

5. Biomedical Engineering, Kaohsiung Medical University, Kaohsiung

6. Drug Development and Value Creation Research Center and with PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80341, Taiwan

Abstract

Introduction: Kidney renal clear cell carcinoma (KIRCC) is a highly heterogeneous and lethal cancer that can arise in patients with renal disease. DeepSurv combines a deep feed-forward neural network with a Cox proportional hazards function and could provide optimized survival results compared with convenient survival analysis. Methods: This study used an improved DeepSurv algorithm to identify the candidate genes to be targeted for treatment on the basis of the overall mortality status of KIRCC subjects. All the somatic mutation missense variants of KIRCC subjects were abstracted from TCGA-KIRC database. Results: The improved DeepSurv model (95.1%) achieved greater balanced accuracy compared with the DeepSurv model (75%), and identified 610 high-risk variants associated with overall mortality. The results of gene differential expression analysis also indicated nine KIRCC mortality-risk-related pathways, namely the tRNA charging pathway, the D-myo-inositol-5-phosphate metabolism pathway, the DNA double-strand break repair by nonhomologous end-joining pathway, the superpathway of inositol phosphate compounds, the 3-phosphoinositide degradation pathway, the production of nitric oxide and reactive oxygen species in macrophages pathway, the synaptic long-term depression pathway, the sperm motility pathway, and the role of JAK2 in hormone-like cytokine signaling pathway. The biological findings in this study indicate the KIRCC mortality-risk-related pathways were more likely to be associated with cancer cell growth, cancer cell differentiation, and immune response inhibition. Conclusion: The results proved that the improved DeepSurv model effectively classified mortality-related high-risk variants and identified the candidate genes. In the context of KIRCC overall mortality, the proposed model effectively recognized mortality-related high-risk variants for KIRCC.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3