Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling

Author:

Giorgio-Serchi Francesco12,Arienti Andrea2,Laschi Cecilia2

Affiliation:

1. Southampton Marine and Maritime Institute, University of Southampton, UK

2. Scuola Superiore Sant’Anna, The Biorobotics Institute, Italy

Abstract

A new kind of underwater vehicle is developed by taking inspiration from cephalopods. Its actuation routine is scrutinized via a suitable model. Similar to octopuses and squids, these vehicles consist of an elastic, hollow shell capable of undergoing sequential stages of ingestion and ejection of ambient fluid, which is driven by the recursive inflation and deflation of the shell. The shell actively collapses, and in this way it expels water through a funnel; then it passively returns to the inflated shape, drawing ambient fluid into the cavity. By doing so, a pulsed-jet propulsion routine is performed that enables the vehicle to propel itself in water. Due to their soft nature, the actuation of these vehicles is largely dependent on the subtle management of the elastic response of the shell throughout the propulsion routine. A kinematic model of the actuation mechanism, thoroughly corroborated by experimental validation, is devised which elucidates the relationship between the active (collapse) and passive (refill) stages of the actuation. Upon association with the dynamics of the vehicle, this model permits the derivation of the generic performance profiles of this new kind of vehicle. It is acknowledged that, for given design specifications, an optimal swimming speed exists in coincidence with the coordinated operation between the crank mechanism driving the shell contraction and the onset of elastic energy, which determines the speed of inflation of the shell. These results are invaluable in the definition of rigorous design criteria and derivation of ad-hoc control laws for a new breed of optimized soft-bodied, pulsed-jet, unmanned underwater vehicles.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3