Affiliation:
1. INRIA, Rhône-Alpes and Gravir-CNRS
2. INRIA, Rhône-Alpes and Gravir-CNRS,
Abstract
Reliable and efficient perception and reasoning in dynamic and densely cluttered environments are still major challenges for driver assistance systems. Most of today’s systems use target tracking algorithms based on object models. They work quite well in simple environments such as freeways, where few potential obstacles have to be considered. However, these approaches usually fail in more complex environments featuring a large variety of potential obstacles, as is usually the case in urban driving situations. In this paper, we propose a new approach for robust perception and risk assessment in highly dynamic environments. This approach is called Bayesian occupancy filtering; it basically combines a four-dimensional occupancy grid representation of the obstacle state space with Bayesian filtering techniques.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献