Randomized path planning on manifolds based on higher-dimensional continuation

Author:

Porta Josep M1,Jaillet Léonard1,Bohigas Oriol1

Affiliation:

1. Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

Abstract

Despite the significant advances in path planning methods, highly constrained problems are still challenging. In some situations, the presence of constraints defines a configuration space that is a non-parametrizable manifold embedded in a high-dimensional ambient space. In these cases, the use of sampling-based path planners is cumbersome since samples in the ambient space have low probability to lay on the configuration space manifold. In this paper, we present a new path planning algorithm specially tailored for highly constrained systems. The proposed planner builds on recently developed tools for higher-dimensional continuation, which provide numerical procedures to describe an implicitly defined manifold using a set of local charts. We propose to extend these methods focusing the generation of charts on the path between the two configurations to connect and randomizing the process to find alternative paths in the presence of obstacles. The advantage of this planner comes from the fact that it directly operates into the configuration space and not into the higher-dimensional ambient space, as most of the existing methods do.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A state-of-the-art review on topology and differential geometry-based robotic path planning—part I: planning under static constraints;International Journal of Intelligent Robotics and Applications;2024-03-20

2. Constrained Stein Variational Trajectory Optimization;IEEE Transactions on Robotics;2024

3. Constraint-free discretized manifold-based path planner;International Journal of Intelligent Robotics and Applications;2023-10-14

4. Optimal Task-Space Tracking With Minimum Manipulator Reconfiguration;IEEE Robotics and Automation Letters;2022-04

5. Approximating Constraint Manifolds Using Generative Models for Sampling-Based Constrained Motion Planning;2021 IEEE International Conference on Robotics and Automation (ICRA);2021-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3