Minimal configuration point cloud odometry and mapping

Author:

Bhandari Vedant1ORCID,Phillips Tyson Govan1,McAree Peter Ross1

Affiliation:

1. The School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia

Abstract

Simultaneous Localization and Mapping (SLAM) refers to the common requirement for autonomous platforms to estimate their pose and map their surroundings. There are many robust and real-time methods available for solving the SLAM problem. Most are divided into a front-end, which performs incremental pose estimation, and a back-end, which smooths and corrects the results. A low-drift front-end odometry solution is needed for robust and accurate back-end performance. Front-end methods employ various techniques, such as point cloud-to-point cloud (PC2PC) registration, key feature extraction and matching, and deep learning-based approaches. The front-end algorithms have become increasingly complex in the search for low-drift solutions and many now have large configuration parameter sets. It is desirable that the front-end algorithm should be inherently robust so that it does not need to be tuned by several, perhaps many, configuration parameters to achieve low drift in various environments. To address this issue, we propose Simple Mapping and Localization Estimation (SiMpLE), a front-end LiDAR-only odometry method that requires five low-sensitivity configurable parameters. SiMpLE is a scan-to-map point cloud registration algorithm that is straightforward to understand, configure, and implement. We evaluate SiMpLE using the KITTI, MulRan, UrbanNav, and a dataset created at the University of Queensland. SiMpLE performs among the top-ranked algorithms in the KITTI dataset and outperformed all prominent open-source approaches in the MulRan dataset whilst having the smallest configuration set. The UQ dataset also demonstrated accurate odometry with low-density point clouds using Velodyne VLP-16 and Livox Horizon LiDARs. SiMpLE is a front-end odometry solution that can be integrated with other sensing modalities and pose graph-based back-end methods for increased accuracy and long-term mapping. The lightweight and portable code for SiMpLE is available at: https://github.com/vb44/SiMpLE .

Funder

University of Queensland

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3