Ford Multi-AV Seasonal Dataset

Author:

Agarwal Siddharth1ORCID,Vora Ankit1,Pandey Gaurav2,Williams Wayne1,Kourous Helen1,McBride James2

Affiliation:

1. Ford AV LLC, Dearborn, MI, USA

2. Ford Motor Company, Dearborn, MI, USA

Abstract

This article presents a challenging multi-agent seasonal dataset collected by a fleet of Ford autonomous vehicles (AVs) at different days and times during 2017–2018. The vehicles traversed an average route of 66 km in Michigan that included a mix of driving scenarios such as the Detroit airport, freeways, city centers, university campus, and suburban neighborhoods. Each vehicle used in this data collection was a Ford Fusion outfitted with an Applanix POS-LV GNSS/INS system, four HDL-32E Velodyne 3D-lidar scanners, six Point Grey 1.3 MP cameras arranged on the rooftop for 360° coverage, and one Point Grey 5 MP camera mounted behind the windshield for the forward field of view. We present the seasonal variation in weather, lighting, construction, and traffic conditions experienced in dynamic urban environments. We also include data from multiple AVs that were driven in close proximity. This dataset can help design robust algorithms for AVs and multi-agent systems. Each log in the dataset is time-stamped and contains raw data from all the sensors, calibration values, pose trajectory, ground-truth pose, and 3D maps. All data is available in rosbag format that can be visualized, modified, and applied using the open-source Robot Operating System (ROS). We also provide the output of reflectivity-based localization for bench-marking purposes. The dataset can be freely downloaded at avdata.ford.com .

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occupancy Grid Mapping Without Ray-Casting for High-Resolution LiDAR Sensors;IEEE Transactions on Robotics;2024

2. VxH: A Systematic Determination of Efficient Hierarchical Voxel Structures;ACM Transactions on Spatial Algorithms and Systems;2023-12-11

3. Vehicle Detection for Autonomous Driving: A Review of Algorithms and Datasets;IEEE Transactions on Intelligent Transportation Systems;2023-11

4. SMART-Degradation: A Dataset for LiDAR Degradation Evaluation in Rain;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. Stereo Visual Odometry with Deep Learning-Based Point and Line Feature Matching Using an Attention Graph Neural Network;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3