Experiments in Balance with a 3D One-Legged Hopping Machine

Author:

Raibert Marc H.1,Brown H. Benjamin1,Chepponis Michael1

Affiliation:

1. Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania 15213

Abstract

In order to explore the balance in legged locomotion, we are studying systems that hop and run on one springy leg. Pre vious work has shown that relatively simple algorithms can achieve balance on one leg for the special case of a system that is constrained mechanically to operate in a plane ( Rai bert, in press; Raibert and Brown, in press). Here we general ize the approach to a three-dimensional ( 3D) one-legged machine that runs and balances on an open floor without physical support. We decompose control of the machine into three separate parts: one part that controls forward running velocity, one part that controls attitude of the body, and a third part that controls hopping height. Experiments with a physical 3D one-legged hopping machine showed that this control scheme, while simple to implement, is powerful enough to permit hopping in place, running at a desired rate, and travel along a simple path. These algorithms that control locomotion in 3D are direct generalizations of those in 2D, with surprisingly little additional complication.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 247 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3