Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance

Author:

Chaffre Thomas1ORCID,Wheare Jonathan1,Lammas Andrew1,Santos Paulo12,Le Chenadec Gilles3,Sammut Karl12ORCID,Clement Benoit123ORCID

Affiliation:

1. College of Science and Engineering, Flinders University, Adelaide, SA, Australia

2. CROSSING IRL CNRS, Adelaide, SA, Australia

3. Lab-STICC UMR CNRS, ENSTA Bretagne, Brest, France

Abstract

Learning-based adaptive control methods hold the potential to empower autonomous agents in mitigating the impact of process variations with minimal human intervention. However, their application to autonomous underwater vehicles (AUVs) has been constrained by two main challenges: (1) the presence of unknown dynamics in the form of sea current disturbances, which cannot be modelled or measured due to limited sensor capability, particularly on smaller low-cost AUVs, and (2) the nonlinearity of AUV tasks, where the controller response at certain operating points must be excessively conservative to meet specifications at other points. Deep Reinforcement Learning (DRL) offers a solution to these challenges by training versatile neural network policies. Nevertheless, the application of DRL algorithms to AUVs has been predominantly limited to simulated environments due to their inherent high sample complexity and the distribution shift problem. This paper introduces a novel approach by combining the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture to formulate an adaptive controller. In this framework, we propose a Sim-to-Real transfer strategy, incorporating a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform. Our experimental assessments demonstrate the effectiveness of this method in learning proficient policies from suboptimal simulated models of the AUV. When transferred to a real-world vehicle, the approach exhibits a control performance three times higher compared to its model-based nonadaptive but optimal counterpart.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3