Finding and identifying simple objects underwater with active electrosense

Author:

Bai Yang1,Snyder James B.2,Peshkin Michael1,MacIver Malcolm A.123

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA

2. Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA

3. Department of Neurobiology, Northwestern University, Evanston, IL, USA

Abstract

Active electrosense is used by some fish for the sensing of nearby objects by means of the perturbations the objects induce in a self-generated electric field. As with echolocation (sensing via perturbations of an emitted acoustic field) active electrosense is particularly useful in environments where darkness, clutter or turbidity makes vision ineffective. Work on engineered variants of active electrosense is motivated by the need for sensors in underwater systems that function well at short range and where vision-based approaches can be problematic, as well as to aid in understanding the computational principles of biological active electrosense. Prior work in robotic active electrosense has focused on tracking and localization of spherical objects. In this study, we present an algorithm for estimating the size, shape, orientation, and location of ellipsoidal objects, along with experimental results. The algorithm is implemented in a robotic active electrosense system whose basic approach is similar to biological active electrosense systems, including the use of movement as part of sensing. At a range up to ≈20 cm, or about half the length of the robot, the algorithm localizes spheroids that are one-tenth the length of the robot with accuracy of better than 1 cm for position and 5° in orientation. The algorithm estimates object size and length-to-width ratio with an accuracy of around 10%.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3