A learning-based harmonic mapping: Framework, assessment, and case study of human-to-robot hand pose mapping

Author:

Chong Eunsuk1ORCID,Zhang Lionel1,Santos Veronica J.1

Affiliation:

1. Biomechatronics Laboratory, Department of Mechanical and Aerospace Engineering, University of California–Los Angeles, Los Angeles, CA, USA

Abstract

Harmonic mapping provides a natural way of mapping two manifolds by minimizing distortion induced by the mapping. However, most applications are limited to mapping between 2D and/or 3D spaces owing to the high computational cost. We propose a novel approach, the harmonic autoencoder (HAE), by approximating a harmonic mapping in a data-driven way. The HAE learns a mapping from an input domain to a target domain that minimizes distortion and requires only a small number of input–target reference pairs. The HAE can be applied to high-dimensional applications, such as human-to-robot hand pose mapping. Our method can map from the input to the target domain while minimizing distortion over the input samples, covering the target domain, and satisfying the reference pairs. This is achieved by extending an existing neural network method called the contractive autoencoder. Starting from a contractive autoencoder, the HAE takes into account a distance function between point clouds within the input and target domains, in addition to a penalty for estimation error on reference points. For efficiently selecting a set of input–target reference pairs during the training process, we introduce an adaptive optimization criterion. We demonstrate that pairs selected in this way yield a higher-performance mapping than pairs selected randomly, and the mapping is comparable to that from pairs selected heuristically by the experimenter. Our experimental results with synthetic data and human-to-robot hand pose data demonstrate that our method can learn an effective mapping between the input and target domains.

Funder

Advanced Robotics for Manufacturing Institute

National Science Foundation

Office of Naval Research

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3