High-speed autonomous quadrotor navigation through visual and inertial paths

Author:

Do Tien1,Carrillo-Arce Luis C1,Roumeliotis Stergios I1

Affiliation:

1. MARS Laboratory, Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA

Abstract

This paper addresses the problem of autonomous quadrotor navigation within indoor spaces. In particular, we focus on the case where a visual map of the area, represented as a graph of linked images, is constructed offline (from visual and potentially inertial data collected beforehand) and used to determine visual paths for the quadrotor to follow. In addition, during the actual navigation, the quadrotor employs both wide- and short-baseline random sample consensuses (RANSACs) to efficiently determine its desired motion toward the next reference image and handle special motions, such as rotations in place. In particular, when the quadrotor relies only on visual observations, it uses the 5pt and 2pt algorithms in the wide- and short-baseline RANSACs, respectively. On the other hand, when information about the gravity direction is available, significant gains in speed are realized by using the 3pt+1 and 1pt+1 algorithms instead. Lastly, we introduce an adaptive optical-flow algorithm that can accurately estimate the quadrotor’s horizontal velocity under adverse conditions (e.g., when flying over dark, textureless floors) by progressively using information from more parts of the images. The speed and robustness of our algorithms are evaluated experimentally using a commercial-off-the-shelf quadrotor navigating in the presence of dynamic obstacles (i.e., people walking) along lengthy corridors and through tight corners, as well as across building floors via poorly lit staircases.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3