Optimality and Robustness in Multi-Robot Path Planning with Temporal Logic Constraints

Author:

Ulusoy Alphan1,Smith Stephen L.2,Ding Xu Chu3,Belta Calin1,Rus Daniela4

Affiliation:

1. Division of Systems Engineering, Boston University, Boston, MA, USA

2. Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

3. Embedded Systems and Networks, United Technologies Research Center, East Hartford, CT, USA

4. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

In this paper we present a method for automatic planning of optimal paths for a group of robots that satisfy a common high-level mission specification. The motion of each robot is modeled as a weighted transition system, and the mission is given as a linear temporal logic (LTL) formula over a set of propositions satisfied at the regions of the environment. In addition, an optimizing proposition must repeatedly be satisfied. The goal is to minimize a cost function that captures the maximum time between successive satisfactions of the optimizing proposition while guaranteeing that the formula is satisfied. When the robots can follow a given trajectory exactly, our method computes a set of optimal satisfying paths that minimize the cost function and satisfy the LTL formula. However, if the traveling times of the robots are uncertain, then the robots may not be able to follow a given trajectory exactly, possibly violating the LTL formula during deployment. We handle such cases by leveraging the communication capabilities of the robots to guarantee correctness during deployment and provide bounds on the deviation from the optimal values. We implement and experimentally evaluate our method for various persistent surveillance tasks in a road network environment.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3